
USAISEC
US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

T .S. ARMY INSTITUTE FOR RESEARCH

A D-A268 574 IN MANAGEMENT INFORMATION,A -- 26 574JNICATIONS, AND COMPUTER SCIENCES

A Dynamic Help Generator for U.S. Army
Installation-Level Software

SDTIC

ELECTE
sag r X AUG2? ,1993.u

ASQB-GM-92-001
September 1991

AIRMICS
115 O'Keefe Building
Georgia Institute of Technology 93-20018
Atlanta, GA 30332-0800 • I\\I\it N(

\~II\~II(j

L IMA K NOIC

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

SECURITY CLASSIFICATION OF THIS PAGE IForm Approved
REPORT DOCUMENTATION PAGE o No. 0704-0188

Exp. Date: Jun 30. 1986

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2a. SECURITY CLASSIFICAION AUTHORITY 3. DISTRIBUTION/AVAILIBILTY OF REPORT

N/A
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ASQB-GM-92-001 N/A

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

AIRMICS ASQB-GM N/A
6c. ADDRESS (City. State, and ZIp Code) 7b. ADDRESS (City, State. and ZIP Code)

115 O'Keefe Building
Georgia Institute of Technology
Atlanta, Georgia 30332-0800 N/A

8b. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AIRMICS ASQB-GM
8c. ADDRESS (City. State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

115 O'Keefe Bldg. PROGRAM 3PROJECT I TASK IWORK UNIT
Georgia Institute of Technology ELEMENT NO. NO. NO. ACCESSION NO.

Atlanta, GA 30332-0800 62783A DY10 05

11. TITLE (Include Security Classification)

A Dynamic Help Generator for US Army Installation-Level Software

12. PERSONAL AUTHOR(S)

Mark G. Washechek
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year. Month. DayI 15. PAGE COUNT

FROM TOI 88

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP

19. ABSTRACT (Continue on reverse If necessary and identify by block number)

The purpose of this project is to develop a Dynamic Help Generator. This paper describes

that Dynamic Help Generator, a programmer's development tool intended to be used by some-

one who seeks to design and implement a Dynamic Help Module (a module that can be added
to interactive programs to produce Dynamic Help messages). Dynamic Help messages are

non-interactive, state-specific, and context-specific messages that attempt to answer

every question that a user might have at a specific point in a program.

20. DISTRIBUTIONN/AVAILIBILTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[g UNCLASSIFIED/UNLIMITEDO SAME AS RPT. Q] DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE(Include Area Code 22c. OFFICE SYMBOL

LTC Michael E. Mizell (404) 894-3107 ASQB-GM

DD FORM 1473, 84 MAR 83 APR edition may be us,'d untii exhausted.
Al other editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE_

This research was performed for the Army Institute for Research in Management

Information, Communications, and Computer Sciences (AIRMICS), the RDTE organization
of the U.S. Army Information Systems Engineering Command (USAISEC).This research
report is not to be construed as an official Army position, unless so designated by other
authorized documents. Material included herein is approved for public release, distribution
unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

"lJames Gantt R. Mitchell
'*Division Chief Director

,MlSD. AIRMICS

A Dynamic Help Generator for U.S. Army
Installation-Level Software

A Technical Paper

by

Mark G. Washechek
Captain, United States Army

Project Course ISYE 8704
School of Industrial and Systems Engineering

Georgia Institute of Technology Aeoeosson For

Atlanta, Georgia 30332-0205 ,TAB• CA
DTIC TAB 13
Unanrowuioed 0

Course Advisor: Just t f.!ton

Donovan Young
Distribut io/
Availabilitty 94•._

D77CQUAITY -172ECTD 3v&11 and/or
DTZ QULIT I1Si'CTE ~ Dist special

September 6, 1991
Acaf~s L1a~v'*.-

A Dynamic Help Generator for U.S. Army
Installation-Level Software

A Technical Paper

by

Mark G. Washechek
Captain, United States Army

Project Course ISYE 8704
School of Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332-0205

Course Advisor:
Donovan Young

Table of Contents

1. Introduction .. 1

1.1 Background 1
1.1.1 Background of Dynamic Help 1
1.1.2 Background of the Dynamic Help Generator 7

1.2 The Dynamic Help Generator 9

2. Technical Synopsis of Previous Work 10

2.1 Dynamic Help in ACIEFS (a technical explanation) . .. 1 0
2.1.1 General Principles 1 0
2.1.2 The Dynamic Help Prototype in ACIFS-.......1 2
2.1.3 Initial Dynamic Help Generator Architecture 15

2.2 Conversion of ACIFS to ACE 20

2.3 Automatability of the Dynamic Help Generator 2 1

3. Design of the Dynamic Help System 26

3.1 Aims of the Prototype Dynamic Help Generator 26

3.2 Architecture of the Generator-produced System . . .3 1

3.3 Prospective Structure of Generator-produced
M essages 3 7

3.4 Structure of Generator-produced Knowledge Bases 4 1
3.4.1 Structure of the Context Vector 4 1
3.4.2 General Message Structure 45
3.4.3 Sentence Structures 47
3.4.4 Dictionary Structures 5 2

3.5 Automated Dynamic Help Illustration 5 7

4. The Dynamic Help Generator: a set of Designer's

Tools .. 64

4.1 Requirements for the Dynamic Help Generator64

4.2 Generator Implementation for ACIFS 67

4.3 Recommendations 69

Appendix 1
Description of ACRONYMS 70

Appendix 2
Sample Specification of a Menu-screen Dynamic Help Message . 72

Appendix 3
Sample Specification of the Specification of a
Data-entry-screen Dynamic Help Message for Both Global
and Local Messages 74

Appendix 4

Sample Entries from the Dictionary of Text Macros 78

6 b ii• o rtmkt•0 8n

A Dynamic Help Generator for Installation-
Level Software

1. Introduction

The Army Institute for Research in Management Information

Communications and Computer Science (AIRMICS) undertook a

project to develop a Dynamic Help Generator during the summer of

1991. This paper describes that Dynamic Help Generator, a

programmer's development tool intended to be used by someone who

seeks to design and implement a Dynamic Help module.

A Dynamic Help module is software that can be added to an

interactive program to produce Dynamic Help messages. Dynamic

Help messages are non-interactive, state-specific, and context-specific

messages that attempt to answer every question that a user might have

at a specific point in a program.

Section 1.1 traces the background of the Dynamic Help concept

and the background of the U.S. Army research that led to the Dynamic

Help Generator, the development reported by this paper. Section 1.2

introduces the Dynamic Help Generator development project. The

first implementation of Dynamic Help sought to improve the interface

usability of the Automated Central Issue Facility System (ACIFS). a

software package for managing U.S. Army clothing warehouses.

L.I Background

1.1.1 Background of Dynamic Help

Dynamic Help. an extension of context-sensitive help, was

introduced by Dr. Donovan Young (Young 1990). It is the latest in a

I

progression of methods that software engineers can use to provide

users of interactive programs with online help.

The simplest help system consists of a reference manual

containing an index. The manual is organized by listing each feature

and an explanation of how to use it. Generally, the user is looking for a

combination of features to perform a specific function. If the user can

recognize the vocabulary that he associates with what he is trying to

accomplish, he can use the manual. A more advanced approach gives

the user an online manual. This automated version suffers the same

drawbacks as the hardcopy reference manual. Both require the user to

look up commands, not functions.

For example, the user may be thinking of delete, erase, expunge,

or destroy, but the index lists only purge. A possible solution would be

to list synonyms for each command in the index. The user could look

up delete, and the index would refer him to the correct command:

purge. Becatlqe the index lists features', not the functions that can be

performed with features, the user with a specific function in mind is

not well served by an index (Young 1990).

A possible method of overcoming this deficiency is listing, with

each feature, the common functions related to that feature. For

example, if feature "A" is frequently used in "Formatting a matrix."

then that function would be mentioned in the section on feature "AW.

The index would list "Formatting a matrix" as an entry, indicating all

of the page numbers where "Formatting a matrix" appears. This would

allow the user to look up all of the features that help perform

"Formatting a matrix." A typical attempt to provide such indexing is

the task-oriented menus in the Help system of the IBM Virtual

2

Machine System Product VM/SP; the Help menus list tasks such as

"Communicate with other users." not Just the commands that

accomplish the task (Dorazio 1988). Better indexing is valuable, but it

cannot solve the whole problem. Unfortunately. some users tend to

think up and guess just too many "wrong" words and too many

functions - and names for them. Users could also envision functions

the software could perform that the designer did not anticipate.

"Successful systems often combine two or three techniques.

The Info system from Convex provides three routes to information:

menus, topics, and commands" (Horton 1990a). Some software

companies publish a tutorial manual containing illustrative examples

for the user to work through. These tutorial lessons demonstrate the

functions available to the user. A tutorial program - a very expensive

option - is the automated version of the hardcopy tutorial manual.

"Online documentation" was the earliest form of user online

help. When software engineers enabled users to do more than just

scroll through the index or table of contents, note the page that

appeared to be relevant, and scroll to that page, it became "online

help". To ask for help on a specific subject, users would interact with

the computer by specifying what was needed, either by "touching" an

item in the index or table of contents, or entering a key word or

phrase. The computer would then give an explanation of the key word

or phrase. These online documentation systems were the first

processes that could honestly be called "help" systems (Young 1991a).

Interactive context-sensitive help is one of the most recent

developments:

3

"The aelp you get depends on where you are in the
p.,,gram when you request help. If you are executing a
particular command, for instance, you would get help on
that command. If an error has Just occurred, then an
explanation of that error will result" (Horton 1990).

Some systems, such as the Integraph family of computer-aided design

systems, organize the help messages by object and by command. In an

interactive protocol by which there is normally a specific set of objects

currently active, a help message can be activated without asking the

user to clarify what help is needed. A more common and less

elaborate facility that is also called context-sensitive is that of the

Macintosh System 7 interface. The computer knows what screen the

user is working with; this enables the user to touch or specify the

type of help wanted by pointing at the object or command in question

after invoking the Help command. The computer gives a short help

message explaining the object on the screen. Messages usually have

ad-hoc structures; hence, software writers must write a help message

for every object the user could point to. "Many help facilities ... link

context-sensitive help with an online users reference manual" (Horton

1990).

Dynamic Help differs from context-sensitive help in two ways:

protocol and construction. The protocol for context-sensitive help

requires the user to invoke help. to indicate for which object or

command the help is being sought, and to exit from help. The

protocol for Dynamic Help. by contrast, is not interactive; the user

activates objects or commands before invoking help. This allows the

Dynamic Help message to be truly specific to the situation, rather than

just being a canned blurb about a given object or command. Note,

however, that the Dynamic Help protocol presupposes that it is

4

possible to activate commands or objects without invoking them.

Otherwise. if the basic interactive procedure has what Dr. Young calls

"premature closure" (i.e., a keyboard entry or screen touch is acted

upon instantly without waiting for the user to press <RETURN> or

answer a confirm question), situations are too vague for Dynamic help

to be useful.

Dynamic Help messages not only differ from context-sensitive

messages in protocol, but also in construction. A Dynamic Help

message is assembled from fixed and variable components rather than

retrieved (Young 1990). This makes it automatable, whereas in a

context-sensitive help system, someone must specifically write each

message verbatim.

Dynamic Help is neither interactive nor does it require

hundreds of different structures for help messages. It is applicable to

programs in which the context is quite narrowly defined by such

information as cursor location, highlighted objects and commands,

and so forth. A user can perform a task at each location within the

program. Regardless of whether the user is in the right place, that

location in the program has a specific task allocated to it. The

Dynamic Help Module assembles a message explaining everything

about performing that task in the current context. In a narrowly-

defined context, the help message needs to contain only three things.

When in the right place, the user needs either instructions on how to

accomplish a narrowly defined task or an explanation of the task If he

is in the wrong place, he needs instructions on how to leave this

context to find a more appropriate one to suit his purpose (Young

1991a).

5

Dynamic Help has a significant advantage over reference and

tutorial manuals, because the Dynamic Help Module has a means of

deriving all of the questions that a user could ask. The user is not

required to narrow the scope of his question and use an index or table

of contents. Dynamic Help's main advantage over context-sensitive

help is not in user interface. (Context-sensitive programmers could

create a help message for every location within a program, and these

messages could be just as understandable as Dynamic Help messages.

Also, a context-sensitive help program will outperform Dynamic Help

in word processing applications where a user is confronted with

multiple options for each location within the program.) Dynamic

Help's great advantage over context-sensitive help is that it is

automatable.

Captains Walter Barge (Barge 1991) and Stanley Haines (Haines

1991) demonstrated that software engineers and programmers can

use Dynamic Help to generate Dynamic Help modules using a reusable

format. This saves an enormous amount of system development time.

There is no requirement to write and store every help message in a

database.

Dynamic Help uses generic grammar structures whose "slots"

are filled by querying data values and dictionaries of objects, formats.

commands, functions, variables, domains, and protocols. The Dynamic

Help module can construct help messages from variable parameters.

fixed text, and dictionary entries. By writing dictionaries, system

designers can avoid writing hundreds or thousands of different help

messages (Young 1991a).

6

1.1.2 Background of the Dynamic Help Generator

At the Georgia Institute of Technology, AIRMICS is conducting

research on Dynamic Help in support of the US Army's Installation

Support Module (ISM) project. AIRMICS' goal is to improve the

resulting system's accessibility to novice and intermittent users. New

users have difficulty moving from one program to another without

extensive training. Additionally, users who do not use a particular

program for a period of time forget parts of the language and protocols

of its interface.

AIRMICS is working on the Army's Central Issue Facility

Software (ACIFS) to make it more user friendly by adding Dynamic

Help to it. The cost to rewrite the ACIFS interface, the alternative to

Dynamic Help, could be high. Rewriting would mean changing the

commands and procedures that a user must perform to run the

program. ACIFS would need to be organized and labeled in such a way

that even novice users would not need to seek help. This would be

costly. Dynamic Help is a less expensive alternative.

AIRMICS performed the programming while Dr. Young designed

the Dynamic Help software shell that fits over the current ACIFS.

Georgia Tech software engineer Christopher Smith wrote the

Informix-4GL code used for the ACIFS Dynamic Help shell. AIRMICS

has another coding system. AT&T's Application Connectivity

Engineering (ACE), that could speed the conversion of Dynamic Help

to other Army database software. Dr. Jerry McCoyd and Mr. Smith are

converting Dynamic Help from Informix GL to ACE.

Dr. Young enlisted several US Army officers in graduate

programs at Georgia Tech to assist with the design and testing of

7

Dynamic Help. Captain Renee S. Wolven tested the first

implementation of Dynamic help on ACIFS using supply clerks, and

she found that it got the clerks past stumbling blocks and reduced

errors for careful clerks. Unfortunately, the ACIFS test software is

slow, and the system takes a fairly long time to generate the Dynamic

Help messages on the user's monitor screen. Captain Wolven

documented these findings in her master's thesis (Wolven 1991).

Captain Walter S. Barge, II, in his "Universal Software

Documentation via Dynamic Help" research report, May 1991,

investigated the possibility of designing Dynamic Help into future

database software. Using the principles of Dynamic Help, he designed

a workable Dynamic Help system for student course registration at a

hypothetical university. His strategy specified a package of tools to

define the generic structure and dictionaries of the Dynamic Help

Module. The results show that Dynamic Help messages can be

automated, allowing the designer to write dictionaries instead of

performing the much greater task of writing all of the possible

messages. The strategy serves both the needs of initial documentation

and those of Dynamic Help.

For existing software, Dynamic Help is equally attractive.

Captain Stanley K. Haines is investigating the possibility of automating

Dynamic Help for other US Army interactive software (Haines 1991).

Captain Haines is determining if Dynamic Help and related Embedded

User Support (EUS) techniques should be built into subsets of the

general population of the Army's ISM software. He will propose a cost-

effective procedure for implementing EUS add-ons for those ISM

8

programs that will provide the greatest return from EUS; this

procedure uses the Dynamic help Generator.

1.2 The Dynamic Help Generator

This paper reports on the development of the Dynamic Help

Generator, an automated software designer's utility capable of

economically creating Dynamic Help modules for existing U.S. Army

installation level software. The Generator defines the architecture and

structure of Dynamic Help messages as well as the dictionaries that

make up the various help messages. The Dynamic Help Generator

enables software engineers and programmers to quickly create

Dynamic Help modules that will function on most existing installation

software.

Section 2 reviews the work which led up to the Dynamic Help

Generator, including the modification of ACIFS under the ACE

programming development system. Section 3 reports the design of

the Dynamic Help Generator - its aims, its architecture, the structure

of Generator-produced messages, the structure of the Generator-

produced knowledge bases it provides, and an automated Dynamic

Help illustration.

Finally, Section 4 evaluates the Dynamic Help Generator as a set

of designer's tools: the Generator's requirements, the ACIFS

implementation, and generic Generator specifications.

9

2. Technical synopsis of previous work

ACIFS, as part of the ISM project, was the first U.S. Army

software to incorporate Dynamic Help into its user interface. ACIFS

#L08-03-02 had a user interface that was sufficiently complex to fully

test the concepts of Dynamic Help. AIRMICS created a prototype

Dynamic Help module for ACIFS using Informix-4GL software, and CIF

clerks tested the prototype module. When Dynamic Help proved

successful, it was Incorporated into the production version of ACIFS

for use in the Army's Central Issue Facilities (CIFs).

2.1 Dynamic Help in ACIFS (a technical explanation)

2.1.1 General Principles

The "Specification of User Requirements and Dynamic Help

System Standards for EUS project and CIF Conversion" explains the

the general user requirements for the first Dynamic Help system. It

calls for "relatively superficial [requiring minimal changes to an

existing system] and inexpensive software improvements to make

interactive programs more user-friendly... for novice and

intermittent users" (Young 1990b). Dynamic Help leaves in place the

existing help facility if one exists; the two kinds of documentation are

complementary.

Dynamic Help is not forced upon the user; he must invoke it.

The user highlights objects and commands to get into a specific

context, then he can either press the carriage return to invoke the

highlighted command or press the Dynamic Help key to invoke

Dynamic Help. Dynamic Help depends upon the current context of

the interaction and the current state of data.

10

In a DBMS-based program such as ACIFS, an interactive session

can be viewed as a series of database transactions that the user

controls. The user exercises control by navigating via menus and

cursor keys to a desired context where the system is ready to perform

a given transaction. By invoking Dynamic Help while in a context, the

user can verify that he is in the right -place" (context) and can receive

information about the meaning of the transaction (its consequences if

completed), how to complete or abort it, and how to move somewhere

else.

Dynamic Help works best when a user can easily get into a

context that allows help messages to be as specific or as general as he

desires. Premature closure, where the user cannot highlight

commands and objects without invoking them, provides shortcuts for

the expert user, but it prevents detailed Dynamic Help. For example,

if a cursor is on a menu screen and the user cannot type "2" without

invoking menu item "2" and going into another screen, then there

can not be a Dynamic Help message that explains only item "2" in

detail.

Lack of a neutral context, where whatever object the designer

assumes is wanted by the user is automatically activated upon screen

entry, also provides shortcuts for the expert user, but it prevents

general Dynamic Help. For example, if a user gets into a menu screen

where item "1" is automatically highlighted and there is no neutral

item, then there can be no Dynamic help message that explains only

the overall group of items.

II

2.1.2 The Dynamic Help prototype in ACIFS

Dynamic Help, as defined by the specifications for user

requirements and Dynamic Help System standards for the EUS

Project and CIF conversion (Young 1990a), and the implementation of

the prototype Dynamic Help system for ACIFS, was based on ad-hoc

definitions of context and ad-hoc message structures. There are

basically two general contexts in ACIFS: being in a menu screen or

being in a data-entry screen.

In a menu screen, the user can select X (exit) to get to the

parent (next higher) menu screen (in the Main menu screen, this

action causes exit from the program), or select a menu item to get to a

child screen, which is either a next-lower menu screen or a data entry

screen. Screens are arranged in a hierarchical tree with the Main

Menu screen at the top (root) and the data entry screens at the

bottom (leaves). All transactions are accomplished by entering data on

a data entry screen.

In a menu screen, the user's concern is navigation. The user's

goal is either to exit the program or to get to a data entry screen to

perform a transaction. When the goal is to get to a data entry screen,

the user's specific concern is which. if any of the current choices

leads toward that screen; if none of the choices lead to the desired

screen, then X is the appropriate selection (to get to a higher menu

screen, in which one of the choices leads toward the desired data

entry screen). Thus, the main requirement for messages in a menu

screen is to give information about the consequence of choices,

including choice X.

12

In a data-entry screen, the user's concern is likely to be either

the format or content of a field highlighted by the current cursor

position, what will be the consequences of making the current data

entry, how to make closure of, or abort, the current entry, how to get

to another entry (local navigation), or how to get to another screen

(global navigation).

The designers selected a fixed structure for a Dynamic Help

message. It consists of a set of sentences (some possibly null) in a

fixed order (Wolven 1990a, Wolven 1990b, Haines 1990a, Haines

1990b, and Haines 1990c):

"* Context ("Ready to")

"* Global navigation

"• Navigation (local)

"• Meaning

"* Domain

"* Format

"* Content

"* Completion

"* Quirk

"* Pre-Completion Correction

"• Undo

"* Key Effect

The Ready-to (first) sentence within the Dynamic Help message

tells the user that the system is "Ready to" perform a particular task

or function. The user is "Ready to" execute something within the

program. The program retrieves this sentence from a dictionary to

tell the user what he can do. Time constraints to create a Dynamic

13

Help module and the limitations on the Informix-4GL forced Mr.

Smith to use sentences instead of parts of sentences for the test

Dynamic Help module. Entire sentences from the Dynamic Help

message were stored in dictionaries in the database rather than having

parts of sentences stored in separate dictionaries. The size of each

message was limited to two pages.

The global navigation sentences tell the user how to get back to

the screen he just left or how to proceed to the next screen. trhe

next screen may be the second page of the message or the screen that

the user was working on.) Navigation to each "next screen" is simple:

pressing the carriage return moves the individual to the next screen,

or moves the user through the message and back to the position

where the individual originally needed help.

The specifications call for four more sentences, meaning,

domain, content, and format, that would be provided for the user only

when necessary. For ACIFS, the meaning sentence would describe a

Unit Identification Code (UIC) to a user along with an example:

"WEOQAA". Captain Wolven provided the entries for the meaning

sentences. The domain sentence gives a range of values that a user

can enter: a social security number would have a range of values from

1 to 999999999. The content sentence lists of all acceptable entries:

when the user enters whether the soldier is male or female, the

acceptable entries are either "M" or "F'. The format sentence

describes an acceptable arrangement for an entry. An acceptable entry

may be AA###; the sentence says "Where AA is... and ### is..." The

software engineers determined which of these sentences fit in each

message.

14

The next part of the Dynamic Help message contains the

procedure sentences: the completion sentence tells the user how to

complete an entry: "press the return key." An additional quirk

sentence was added to explain information ACIFS automatically

provides to the user when the user inputs data or limitations on the

information that ACIFS provides. This could be a dollar value on a

report of survey or that ACIFS provides data in monthly increments.

The pre-completion correction sentence tells a user how he can

correct an incorrect entry: by "pressing the backspace key." The

undo sentence explains the procedure for a user to go back to a

previous entry on a screen and make a correction. Undoing an entry

involves pressing a combination of arrow, backspace, overstrike, and

return keys. The key effect sentence explains certain keys within the

ACIFS program: ESC, DEL. BREAK. F1, or any other key that performs

a specific function.

2.1.3 Initial Dynamic Help Generator architecture

In the specifications (Wolven 1990a, Wolven 1990b, Haines

1991a, Haines 1991b. Haines 1991c) the identification of context was

ad-hoc: the field names in data entry screens. The Dynamic help

".module" was not a separate program that consulted a context

dictionary. but logic, scattered throughout the program, that captured

the current contexts.

The sentences were written in a semiautomated way. Sentences

were not completely constructed at run time: rather, they were to be

partly constructed and partly retrieved. Actual complete messages

were provided to the programmer. The writing of these messages by

15

the designers was semiautomated by the use of templates, one for

menu-screen messages and one for data-entry-screen messages. Text

macros were defined for frequently-used sentence fragments, clauses

and phrases.

Appendix 2 gives a sample of the specification of a menu-screen

Dynamic Help message. Appendix 3 gives a sample of the specification

of a data-entry-screen Dynamic Help message for both global and local

messages. Appendix 4 gives some entries from the dictionary of text

macros.

Dynamic Help is most applicable to Data Base Management

System (DBMS)-based systems like ACIFS. Because ACIFS is organized

by function, software engineers can exploit the forms utilities,

transparent data-state query, and display capabilities found in systems

rooted in a relational DBMS such as ORACLE or INFORMIX (Young.

1990a).

ACIFS is Informix based. Mr. Smith used Informix-4GL to create

the first Dynamic Help module. ACIFS is organized into a series of

hierarchical menus. At the lowest level menu, each submenu has a

multi-page forms screen. Almost all of the screens are one of two

types of menu screens or one type of form.

Dynamic Help asks for the current command for the field and

the datum the user is on. A datum has a name, a value, and an address

(a place in memory) where a value is stored. The system's "pointer"

counts to the right and down to reach a location. Various commands

can have various structures, but the Dynamic Help module can locate

the commands. There is considerable indirect referencing: "Num" by

convention is an integer value.

16

Mr. Smith began the automation of Dynamic Help with the

original version of ACIFS #L08-03-02, created by the Software

Development Center in Atlanta. He exploited the use of the window

utilities in Informix-4GL. Because ACIFS was a DBMS system, there

was no need to have a transparent data-state query and display

capabilities in order to add Dynamic Help to ACIFS while it was in

Informix. The specifications for system standards for the EUS

conversion require context monitoring. The context is the identity

and purpose of each screen and field. All screens and fields are kept

in dictionaries. The ACIFS system is always in a current state: the

variables each have a value. State monitoring is continuous within the

ACIFS system.

Informix-4GL has RAM limitations, and Mr. Smith felt that the

Informix-4GL system would not have enough memory available to hold

all of the Dynamic Help dictionaries. The first Dynamic Help module

only partially automated Dynamic Help for the original version of

ACIFS. The first Dynamic Help module automated the screen and the

data field by having written parts of the message on the computer's

disk, it contained 2000 lines of code. It was actually 20 small modules

each connected to one of the 20 parts of the ACIFS program. These

20 small modules were connected to the Dynamic Help module. It

had an auto-current program state message. Future versions of

Dynamic Help will have Just one module capable of retrieving

information from the different parts of ACIFS (Smith, 1991).

The first Dynamic Help module recalled sentence size pieces of

data to create its messages. The module made Standard Query

Language (SQL) queries to a database instead of constructing messages

17

from the codes that make up ACIFS. SQL enables a software engineer

to store and retrieve information. Future versions of Dynamic Help

modules will use parts of sentences to create messages.

The logic behind the organization of the code specifies that the

code lines be spread throughout the program. The code lines are

added to each form. Each form is generated using the forms utility of

Informix-4GL (a subroutine). For example, the active screen will have

a function attached to it, and the Dynamic Help module can use the

line numbers when recalling information from the code lines. The

module can then construct sentences for the Dynamic Help messages

from pieces of the code lines.

DBMS-based interactive programs maintain identifiers that keep

track of the user's current screen and previous screen. The ACIFS

Dynamic Help system needs continual access to these two screens and

two other items. Dynamic Help needs to know the next screen

(ordinarily-next screen) that the user could move to and the currently-

highlighted object on the screen. Dynamic Help then keeps these four

items In its own knowledge base. Since the ordinarily-next screens

are not accessible from ACIFS, Captain Wolven provided a table of

ordinarily-next screens. Dynamic Help must also be able to make

(SQL) queries to the ACIFS database to determine the state of the

system (Young 199 la).

Once the Dynamic Help module takes control from ACIFS.

Dynamic Help has a pop-up display that will temporarily write over the

existing screen by creating a window. ACIFS is still operating. but the

Dynamic Help module is in temporary control of the user interface. If

necessary. Dynamic Help will suppress any existing messages. This

18

suppression is the only programming required outside of the Dynamic

Help module.

A user needs a keyboard key that will highlight an item that he

needs help with. The keyboard for the Excel VT100 monitor does not

have the traditional F10 help key, so Mr. Smith used the F4 key

instead. Later, when Captain Haines demonstrated Dynamic Help at

The Army Software Development Center in Washington D.C., Mr.

Smith selected the Control WV key to guarantee a usable key (Smith

1991).

Since the start of the project, the message tone is unchanged.

Messages contain only declarative sentences about objects. They are

concise and give the facts to the user. Messages are not too personal;

they contain no words like 'you". "Ready to" messages do not belittle

the user by telling him what to do.

The original ACIFS Dynamic Help messages were written in

plain English, yet they worked just as well for the user. In fact, the

plain English messages may have been even more understandable to

the user than the fully automated dynamic help messages (Young

1991a).

The first Dynamic Help Generator was designed to test the

feasibility of Dynamic Help because it behaved like the envisioned

Dynamic Help module. The original ACIFS dynamic help messages

were written in plain English, and the first Dynamic Help Generator

did not enjoy the efficiency of a completely automated Dynamic Help,

yet it worked just as well for the user.

The Dynamic Help Generator is one step closer to full

automation. 'Ready to" is only one sentence. It does not have a single

19

structure. The software engineer may need to automate as many as

eight sentences for a Dynamic Help message. Each command will

have a structure. Currently, "ready to" sentences have only 4-5

structures. (Young 1991a).

2.2 Conversion of ACIFS to ACE

Most U.S. Army databases are separated by type and location:

ACIFS is a small subset of these databases. Ideally, the Army would

have one master database: unfortunately, an Armywide database would

be unmanageable. Instead, the Army can have a standard software

language and standardized databases (Young 1991a). The most

promising language is C code, and the ILIDB is the standard Database

for all ISM programs. One benefit of standardized databases is the

learning leverage gained by software engineers from using the same

type of database. Programmers would not have to relearn information

for each new application that they attempt.

A new Dynamic Help Generator is being constructed that will

automate the specification for future Dynamic Help modules. The

current SQL routines and database characteristics of the first Dynamic

Help module should require few changes. The ideal situation is to

keep programmers from specifically importing new code into the

Help Message Generator. Unfortunately for the software engineers,

Informix-4GL restricts the capabilities of Dynamic Help by limiting

what type of information can be gathered by the Dynamic Help

Generator. Informix-4GL is a processing language for databases that

can perform some logic. Informix-4GL and ACE perform similar

20

functions; unfortunately, Informix-4GL is not easily translated into

ACE. ACE uses C language to perform SQL queries (Smith 1991a).

The Army has an abundance of ISM programs written in C code

and compatible with ACE. The current specifications require

translating the first Dynamic Help Generator's Informix-4GL routines

into the C language of ACE. Some conversion is done by hand. The

ACIFS program development under ACE is a process whereby the

Informix-4GL DBMS code is rewritten into C code so that the ACE

utility can be used by software engineers. Mr. Smith is upgrading the

Informix based ACIFS into an ACE version of ACIFS based on C code.

ACE is front end loaded and has the potential to be platform

(hardware) specific. When a software engineer automates a Dynamic

Help Generator, he refers to automating the repeatable procedures for

a set of tasks.

Once the ACE version of ACIFS #L08-04-01 is created on the

AT&T 3B2 mainframe computer, software engineers should be able to

use the ACE utility on any C language computer. The programmer who

seeks to create a Dynamic Help module for another DBMS type of

software has a specific set of rules to follow. New Dynamic Help

modules can then be written in C code with the aid of the Dynamic

Help Generator (Smith 1991a).

2.3 Automatability of Dynamic Help

Captain Haines participated in the initial work on Dynamic Help

automation. Before the automation of ACIFS. Dynamic Help was fully

designed for implementation in the ACE programming environment.

Captain Haines implemented an automation method by hand for a

21

subset of about 7% of ACIFS. He generated 46 messages and

compared them with the prototype Dynamic Help messages.

Wherever prototype messages imparted information not available from

the automated messages, he added Ad-hoc sentences to the automated

messages. Next, he compared the total amount of text that needed to

be authored and stored in both the prototype messages and the

automated messages. The results show that the automated messages

required the authorship and storage of only half of the information

required by prototype messages. When compared with the work

needed to create dictionaries for the prototype Dynamic Help module,

the designer's work was cut in half for automated message

dictionaries. Thus, automation of Dynamic Help is possible and can

succeed in reducing authoring effort and storage requirements.

To estimate Dynamic Help automation efficiency for the whole

ACIFS program, Captain Haines examined the proportions of objects

and acts of each type that were already defined in the dictionaries for

the 46 sample messages. For example, the sample covered only 6 out

of 100 data-entry screens, so 94 additional rows would be needed in

the screen dictionary. On the other hand, information about clothing

items and soldiers, and all generic information, was already in the

dictionaries for the 46 messages. Although the growth in authorship

and storage would be less than linear for the prototype messages, it

would be far less than linear for automated messages. Captain Haines

estimated that the automated messages for all of ACIFS would occupy

about 47K characters, while the prototype messages would occupy

22

about 247K characters, representing a fivefold reduction in designer's

work and storage.*

A Generator can provide a generic context-vector structure, a

set of generic act types and levels, a set of generic object levels (but

not types), a generic message structure (a set of sentence structures),

a generic set of dictionaries, and a generic logic for performing

context identification, message construction, message assembly for

display, and I/O control. The Dynamic Help designer must provide

the specific context-vector element names and types, identify the

variables that track them in the program, provide the object

definitions (types and levels), and fill all the dictionaries.

The Dynamic Help system consists of four parts (explained more

fully in section 3.1): the input/output and control logic, the context

monitor, the knowledge base system, and the message production

system. The Generator can partially automate the design of all parts

except the context monitor. First, the input/output and control logic

part prepares the program to work with the Dynamic Help module. It

assigns a key to invoke Dynamic Help, and it monitors that key and the

control system. It also puts up and takes down messages from the

screen. The input/output and control logic is not automatable (Haines

1991).

Second, the context monitor must update the context

continually from the program as the context changes. It must be part

of the running program - not part of the Dynamic Help module. As an

Not reported in Captain Haines' thesis is the fact that the prototype message files
actually occupy 290K characters, but this is because they were not semi-automated to
the full extent assumed. Some redundant storage was permitted to avoid processing at
run time.

23

example, the current screen is one of the elements of the context

vector. If the program keeps a variable that identifies the current

screen, context monitoring is already accomplished (the Dynamic

Help module will be able to perform this element's part of context

identification simply by reading the value of the variable). On the

other hand, if the program simply erases the display and puts up a

new one without bothering to maintain an identifier for it, the

Dynamic Help module designer would have to add screen-tracking

logic throughout the program to feed the context vector. The context

monitor part of the system is not automatable, yet the Dynamic Help

Generator's documentation could give software engineers advice to

assist them with providing for context monitoring.

Third, the knowledge base system part of the Generator is

automatable. Part one is the Dynamic Help dictionaries that hold the

pieces of the Dynamic Help message sentences. The second part is

the knowledge maintenance system, the complicated part. The

challenge is keeping the dictionaries updated. It is possible that a

soldier could draw equipment from CIF and turn in some of the

equipment before the dictionaries could be updated from the database.

If the clerk invoked Dynamic Help, the message would contain old

data. In this situation, the same soldier is being entered into the

database each visit, yet the clerk would only have the original data

stored in the dictionaries from the session initiation. One way to avoid

this is the Database query system, which depends on DBMS-base tables

and uses these tables from the DBMS-base for dictionaries. A change

in the database will automatically be reflected in the dictionaries.

24

Unfortunately, database queries are 1000 times slower than memory

queries (Young 1991a).

A faster way to maintain the knowledge base is the knowledge

update system. The knowledge update system updates the knowledge

base each time it changes the database. The knowledge reconciliation

and initiation system does two things. It initially queries information

from the database to fill the empty dictionaries. It also periodically

reconciles knowledge-base data with database data.

Finally, there is the message production system that identifies

contexts and uses context vectors to construct messages. (Section 3.1

describes context vectors.) The message production system contains

the context identification system. This routine asks the dictionaries

for values to fill each blank within the Dynamic Help message. A

message may have 14 blanks to fill. The message construction system

uses fixed sentences and a fixed order. It assembles the parts of the

sentences, and it can be automated using ACE.

After simulating the automation process by hand. Captain Haines

validated the automation process by measuring the savings in message

size achieved by automation. He recommends

that a Dynamic help Generator be produced by extracting
the generic tasks in dictionary design, knowledge
maintenance, context identification and message
construction for the ACIFS automated Dynamic Help
system currently under development (Haines 1991).

25

3. Design of the Prototype Dynamic Help generator

3.1 Aims of the Prototype Dynamic Help Generator

The Generator built during the Summer of 1991 at AIRMICS is a

formalization and parameterization of subroutines and practices,

produced in house by AIRMICS as a set of ACE routines written in C,

the ACE shell language, and a report. Software engineers can use

these subroutines and practices to automate Dynamic Help in the ACE

programming environment. The ACIFS program is the first

application.

The intent of the prototype Generator is to simplify the addition

of automated Dynamic Help to DBMS-based application programs in

the ACE environment. Future versions of the Generator could be

published as a set of software developer's tools for use in the ACE

environment (Smith 1991).

The General Specification for Dynamic Help Generators (Young

1991b) provides a list of software items for generic Dynamic Help

systems:

Software items outside the Dynamic Help Module

1. I/O AND CONTROL LOGIC

2. CONTEXT MONITOR

Software items in the Dynamic Help Module

3. KNOWLEDGE BASE SYSTEM

3a. Message and Context Specifications

3b. Dynamic Help Dictionaries

3c. Knowledge Maintenance System

3c 1. Database Query System

26

3c2. Knowledge Update System

3c3. Knowledge Reconciliation and

Initiation System

4. MESSAGE PRODUCTION SYSTEM

4a. Context Identification System

4b. Message Construction System

Item 1 is specific to the programming environment and would

not appear in a generic Generator: however, the prototype Generator

is ACE-specific. An aim of the prototype Generator is to provide I/O

and control logic for a Dynamic Help system. This involves providing a

Help key to invoke Dynamic Help for the Extended Terminal Interface

Program (ETIP), providing for a display of messages constructed by

Dynamic Help, and providing for exit from the messages to restore the

previous screen display, context, and data state.

Item 2 is specific to the application program. In ACIFS, for

example, there are about 700 reachable contexts, and they can be

accurately described by naming the screen and the highlighted or

cursor-resident field in the screen. These fields are almost always a

menu item if the current screen is a menu screen, or a data-entry

item if the current screen is a data-entry screen. The only exception

is a few pop-up fields in which yes/no responses are prompted.

Despite the simplicity of a screen/field definition of context, and its

generality for DBMS-based applications (almost any application written

in the forms-definition utility language of a DBMS-based system will

have such easily-described contexts), contexts are not described in

this way for automated Dynamic Help.

27

An automated Dynamic Help system must identify contexts in

terms of lists of active objects and active acts of defined object types

and act types. Some of these listed objects and acts are close to their

counterparts in a screen/field definition; for example, if the cursor is

on "truck 45" in the "wheeled vehicle" screen, then these two facts

directly translate into two values in the context vector. The context

can be thought of as a point in the program that the vector describes.

The context vector is a one dimensional list of text fields. Each

field is a group of 1 to 14 characters. Automation requires the context

vector to functionally determine the data to fill each variable part (slot)

in each sentence.* Each slot can be filled either directly or indirectly

using a set of rules expressed in the dictionaries and sentence

specifications. A slot can be filled with the name of a context element

(e.g. screen, soldier, or data entry), the value of a context element (e.g.

the turn-ins screen, soldier 472544982, or SSN entry), the text

retrieved from the dictionaries, a value queried from the database, or

with a combination. The characters retrieved are functionally

determined by the values of one or more context elements.

The context vector contains more elements than are minimally

required to identify the context. If the lowest-level act (which is

always a data entry, a selection, or a response to a question) is part of a

higher level act (like a procedure that is a collection of the lowest-

level acts), the active procedure is also listed in the context vector.

The context can include up to four levels of acts. Similarly, if the

lowest-level object (which is always the datum being entered or the

* A functionally determines B (written A -+ B) if there is a procedure to determine the
value of B given the value of A.

28

selection being made) is part of a collection of objects, the active

collection is also listed in the context vector. There can be any

number of levels of objects. Besides these redundant context-specific

active higher-level acts and objects, there are appositives in the

context vector. For example, if a screen has a numerical identifier, a

short name, and a long descriptor, both available in the program,

these can be carried in the context vector as appositive elements.

In general, the designer must identify how the application

system tracks every fact needed in the context vector. He needs to

provide a variable, if one does not already exist, that is updated

wherever each fact can change. Since these variables must be

provided at various points throughout the application's subroutines,

and since the types of objects and acts are specific to the application,

there is no hope of automating the translations from program situation

to context value. Thus, item 2, the context monitor, is outside the

scope of the Generator. (However. context identification - the

Dynamic Help module's method of interpreting the context vector -

is automatable; see items 3a and 4 below.)

The Generator provides a structure for Item 3, the knowledge

base system. Dynamic Help will have its standard sentence

specifications, standard data structure for context specification, and

standard dictionaries regardless of the application (of course the

contents will vary). One aim of the prototype generator is to provide

message specifications and a structure for context specification (item

3a); another aim is to provide templates for the Dynamic Help

dictionaries (item 3b).

29

Item 3c, the knowledge maintenance system, appears to be too

variable for full automation. The original concept included keeping

the knowledge base of a DBMS-based application entirely in the

database and querying information (from disk through the DBMS

engine) at run time (Young 1990a). However, the programmer

discovered long delays when the Dynamic Help module must go to the

disk to generate messages (Young 1991), and messages must be

constructed from a memory-resident knowledge base. Unfortunately,

the knowledge base must duplicate some data that is stored in the

database, and this duplication makes it necessary to provide a

knowledge update system (item 3c2) and a system for reconciling the

knowledge base with the database. The reconciling system can also

serve as a means to initially fill the dictionaries with database data

(item 3c3). If run-time queries are quick enough. all this complexity

can be avoided. The delays encountered in the ACIFS system may just

be artifacts of poor performance of the version of the Informix DBMS

engine used in ACIFS. We omit the knowledge maintenance items (3c.

including 3cl, 3c2, and 3c3) from the scope of the Generator.

Item 4. the message production system, can be fully automated.

The aims of the Dynamic Help Generator include to provide a generic

context identification system and a generic message construction

system. Context identification is simply the task of reading values of

active objects and active acts from the context vector. While this task

is automated, the context monitoring that stores those values is not.

30

3.2 Architecture of the Generator-Produced System

The thoroughness of the system design requirements analysis

will determine the ease of incorporating Dynamic Help into a system.

Those systems created with operational modeling and implemented

through automated code generation are incompatible with Dynamic

Help. The code generators create codes in machine-oriented, not

human language. The requirements analysis must define the objects in

the system and the functions within the system. The ISM systems

with their high usage rates usually require a more detailed user

interface compatible with Dynamic Help (Barge 1991).

The diagram in Figure 1 depicts the architecture of the Dynamic

Help System whose design is to be automated through the Dynamic

Help Generator. The following explanation describes the specifics of

the architecture, using the Dynamic Help System's run-time activities,

from the time that the user presses the Help key to the point where

the Dynamic Help module returns control to the application program.

The Dynamic Help System architecture is made up of 4 processes:

"• Identify context vector

"* Retrieve message parts

"* Combine message parts

"• Display message

When the user presses the help key (FlO). the system interrupt is

activated. (An interrupt is a condition whereby a routine program is

temporarily suspended). The algorithm interrupts the current

program with a procedure call and invokes the Dynamic Help module.

The algorithm pushes the Dynamic Help module to the

31

Help
Key

Calling Program
-[(ACIFS)

Invokes

Dynamic

Help
- Memory Lookups

Identify
Context Dictionaries:
Vector . Command

. Function

. Procedure
Retrieve t . Task
Message - Data entry

Parts • . Menu entry
. Screen
. Choices

S"• . Domain

- - -10. Ad-hocCombine LMessage I

Parts

Returns
control
to system Display

Message

Figure 1: Dynamic Help System Architecture

top of the stack of the system's available program software (Smith

1991a).

32

Ideally, all Dynamic help will operate within memory. Using the

ACE programming tools, Dynamic Help builds arrays for session and

screen entries that make information available in advance. When a

user logs onto a system, new information is called up from the disk

and stored in variable names in arrays. The Dynamic Help module

uses algorithms from the Dynamic Help Generator to retrieve

information from the arrays (dictionaries). The information could be

codes that identify the context vector or characters contained in each

dictionary variable. These variables fill the various parts of the Dynamic

Help message sentences.

This means, that with 10 dictionaries, there is no need for disk

operations to create help messages. There would be 5 object

dictionaries (data entry, menu entry, screen, choices, and domain)

and 4 act dictionaries (command, function, procedure, and task). The

tenth dictionary is ad-hoc; it holds one or more complete message

sentences in each variable (Haines 1991).

Based on the active act and active object (ACIFS has a screen and a

field identifier) Dynamic Help identifies the context vector. The

active object and active act identifiers are unique numeric parameters

that identify the current screen and field (either one or the other may

be null). The algorithms within the Dynamic Help Generator use

memory lookups to find the two numeric parameters in the

dictionaries. The dictionaries serve as tables or memory stores: they

are indexed by the numeric parameters corresponding to one or more

of the variables of the user/program context.

The retrieve message parts routine uses the context vector to

identify which message fragments need to be retrieved and how to fill

33

in the message strings. The prototype Dynamic Help module would

reach down and retrieve one complete string for each message

sentence; the ACE programming tools enabled designers to "expand

out" each string by creating one string (sentence) from several small

strings of data. The Dynamic Help algorithm reaches down into

several dictionaries to create seven of the eight sentences. The Ad-

hoc sentence is stored in a dictionary as a complete string (Smith

1991a).

The message variables in ACIFS are stored in dictionaries. Each

message string has its own index code. A variable within the

dictionary may have several numeric parameters associated with it.

ACIFS strings are indexed by screen identification only (for global and

menu messages) or by both screen and field identification (local

messages). In different messages, some of the sentences may be the

same. Dynamic Help can call up the same string for more than one

message. Strings are also distinguished by type (Context, etc.) Each

string whose index matches the numeric parameter is retrieved.

All but one of the eight sentences that make up the Dynamic

Help message is automated (Section 3.3 provides a complete

explanation of these eight sentences). The ad-hoc sentence allows the

software designer to clarify automated Dynamic Help messages. It

gives the user more specific information about the screen the user is

working on and the field the user highlighted. The ad-hoc sentence

must be written by the designer.

The message is retrieved and assembled in memory (RAM).

Combining message parts includes assigning the variables to

particular message strings. Dynamic Help must keep track of each

34

type of sentence and place it in a certain order (e.g. the "Ready to"

sentence is always first). The message then becomes an array of

strings (Smith 1991a).

To define a Dynamic Help message, the software engineer must

specify the context and fill all of the sentence variable parts (slots).

The values that specify the context identifiers, of each type of active

act and each type of active object, determine the context vector's

numeric parameter. When there is more than one active object or

active act, programmers use fixed (assigned) types. An entry in the

context vector tells which object is the active one of each type. In

order to fill the sentence slots from the context vector, a software

engineer needs an attribute and a name for each context vector item.

The name of an item is its value. The attribute of an item identifies it.

Each part of a fixed verb phrase is an attribute of a combination of two

items in the context vector, an attribute of a combination of more than

two items in the context vector, or a compatible function of values in

the context vector (Young 1991a).

Combining implies that when the variables are retrieved from

storage, the strings are assigned to an array of program variables (a

type of character string). The array is built according to how the

message parts will appear ("Ready to" first, etc.). Formatting expands

the string using the variables retrieved from the dictionaries; it also

inserts blanks between items, periods at sentence ends, linefeeds,

carriage returns, and tabs where needed.

The variables in the defined Help screen are initially null. This

screen is a -form" in ACE. It is a generic page with empty strings

(line widths can be up to 60 characters). ACE combines the assigned

35

variables (those in the context vector). The Dynamic Help module

does a considerable amount of formatting. The sentences must be

broken down to fit into the Dynamic Help message. A routine assists

in determining where the break is made. The routine constantly

checks the length of the sentences when software engineers assign

the strings to message screens. The combine message parts routine

then maps them onto the screen (Smith 1991a).

The display message algorithm from ACE displays the strings and

prompts the user. When the user exits the Dynamic Help

environment, system control returns to the previous program.

The knowledge update system from the Dynamic Help Generator

captures input data, the values of screen entry fields. The same

routines are used to organize strings. Dynamic Help uses updates

made when a clerk first enters them (SSN, etc.). Dynamic Help

replaces old variable values with the new information about the soldier.

The difficulty is identifying the correct dictionary. Dynamic Help uses

the context vector to find the correct dictionaries to store

information.

The two components of speed heavily influence the design

architecture (Young 1991a). The order of sentences will determine

how quickly a clerk can react to a help message. Although the user

may initially need general information listed first to understand

messages, the users quickly master general information and need

screen specific information during run time. Once the information is

displayed with screen specific information ahead of general

information, a delay in the display time may not delay the user because

36

the user can be reading the first sentences generated while the

machine is writing the rest of the message.

The second component of speed is the speed at which the

computer constructs the help messages. The prototype Dynamic Help

messages required the computer to send a request to the Informix

engine that required multiple disk operations to do the Job. Calling up

the SSN meant going outside the system to the disk (the database). A

Dynamic Help module should not have to perform disk operations like

database queries. Using Random Access Memory (RAM), the

computer can pull information up 1000 times faster than having the

computer call up the information from memory. Therefore, going to a

disk means delays in generating messages (Young 1991).

Dynamic Help consists of three related developments: the

design strategy, the generator, and the module. The Dynamic Help

design strategy is an analytical method used to create the structure

and content of Dynamic Help messages. Programmers use the

Dynamic Help Generator to transform these parameters into Dynamic

Help Module software.

3.3 Prospective Structure of Generator-produced messages

This section documents the message structure design before it

was refined, during the Summer of 1991, both by the final stages of

Captain Haines' automatability research and by the actual

implementation of the prototype Generator. The optimum number of

sentences in a Dynamic Help message is eight. The eight sentences

allow sufficient automation without constraining Dynamic Help to an

overly narrow application. "Dynamic Help messages are built with

37

sentences that contain clauses that contain phrases (informally we use

the word 'phrase' sometimes to mean a set of phrases)" (Young 1990).

The sentences have generic names: these are "Ready to", ad-hoc,

meanings, choices, format, domain, alternatives, and general help

sentences. "A complete Dynamic Help message consists of all of its

sentences (including any null sentences)" (Barge 1991). Rarely will a

message need all of the sentences to provide help for a user.

The sentences are listed in order from screen-specific help to

general information. The "Ready to" sentence is first. It orients the

user to the primary act that he is trying to accomplish and the objects

that this act will manipulate. A clerk may be ready to "issue" a "bag,

sleeping" to a soldier. The context sentence is an imperative verb

phrase built from dictionaries. This "Ready to" sentence uses the

most detailed act in the context, or the lowest act applicable to what

the user is doing.

The sentence reads "Ready to" <verb> <direct argument>

<preposition> <indirect argument>. The direct and indirect

argument statements are noun phrases. They fill a descriptive field for

the active object of whatever type. Example: "Ready to" <issue>

<clothing> <to> <soldier>. The direct action object is the clothing

piece and the indirect active object is the soldier.

The ad-hoc sentence is next. It allows the software designer to

give the user more specific information about the screen that the user

is working on and the field the user highlighted. For instance. "Once

NSN entry is completed, a correction to it cannot be made." A clerk

must "delete and reenter NSN to make correction." Because it is not

38

automated, the Ad-hoc sentence can explain "quirks, consequences,

special input protocols, etc." (Young 1991b).

The meanings sentence explains the relevant active act and

relevant active object in the context. The meaning of an object is

retrieved from an object dictionary while the meaning of the act is

retrieved from an act dictionary. One such sentence states "The End

Item Code [active object] informs [active act] the supply system about

the major end item that the requisitioned item supports or replaces."

The choices sentence is fourth in the order. Although the

prototype Dynamic Help System actually assembles lists of choices and

includes them in the message, this sentence has been revised so that

it merely tells the user how to view a list of choices if it is already on

the screen, or how to invoke a list of choices, when one is available.

The format sentence states the "format for the direct argument

of the primary act" (Young 1991b). "The format sentence provides an

example of a correct entry or provides a short description of the

correct format, whichever is more informative" (Young 1990).

Examples are "EXAMPLE: Hat, hot weather" and "EXAMPLE:

8415011841352."

The domain sentence seeks to give the acceptable range of

entries "for the direct argument of the primary act" (Young 1991b). It

is specific to the current field that the user invoked Dynamic Help for.

For instance, "Acceptable entries are 1 to 99999."

The alternatives sentence lists applicable alternative acts.

Included in this sentence are the undo, abort, commit and closure

types of sentences. An undo sentence would say "To make a

correction, press UP or DOWN Arrow Keys as needed and perform

39

entry again, or press RIGHT Arrow Key Backspace key (non-

destructive), overstrike, and press Return Key."

The last sentence is the general help sentence. This sentence

tells a user how to access context-independent help. (The prototype

Generator as actually implemented, following a suggestion in Captain

Barge's study, produces a fixed sentence that tells the user how to

invoke General Help. The information described here is retrieved at

the user's option rather than always included.) The general sentences

usually explain the meaning of keys (ESC, DEL, Fl, etc.). The

navigation sentences, local and global, are now a part of both the

general help sentence and the alternatives sentence. Global navigation

involves moving between screens, windows, and menus. Local

navigation involves moving within a screen, window, or menu. An

example of a global navigation sentence is "Ready to go to" <Active

menu selection> "where you can" <verb clause>. A user can navigate

backward (downward) or forward (upward). There is a limited

number of different methods to move within a D-base program like

ACIFS.

One component of the screen display is the speed that the user

can react to a message. The message architecture places screen

specific information first so that a user familiar with Dynamic Help

messages can get help quickly and return to the ACIFS program before

the Dynamic Help module completes the message. First-time users or

users who have forgotten the general help sentence information can

read through the message to find more general information at the end

of the message.

40

In short, the situation that the user finds himself in and the data

that the user has entered determines the context. The Dynamic Help

module uses this context to find the correct sentence structures for

the Dynamic Help message, and the module fills the sentences from

Dynamic Help dictionaries. The module passes the message to the

application program to display the message for the user.

See Section 3.4.2 below for more detailed and up-to-date

message structures (those actually implemented) for the Generator.

3.4 Structure of Generator-produced Knowledge Bases

The application program loads the Dynamic Help module and its

knowledge base at the beginning of run time. The structure of the

knowledge base is constant; it contains the context vector structure, a

message structure, and a group of Dynamic Help dictionaries filled

with contents.

3.4.1 Structure of the Context Vector

The context vector has a structure that defines active object

types and levels, act types and levels, and appositives. Before run

time, the context vector is empty. At run time, the operating program

fills the context vector and revises it every time the context changes.

(More accurately, the operating program revises variables, and the

Dynamic Help module reads their values as elements of the context

vector.) Context vector values fill messages directly with values of

vector elements or indirectly through the Dynamic Help dictionaries.

One or more elements in the context vector serve as a key entry to

41

each dictionary. The dictionary returns elements to fill sentence slots

(Young 199 1a).

The context vector is volatile (always changing), but the

knowledge base is nonvolatile. The parts of the knowledge base that

are generic are built into the Dynamic Help Generator. The parts that

are application specific are supplied by the designer using the

Generator's tools. The parts that are volatile, the values of elements of

the context vector, change during a run to reflect the current context.

The structure of the context vector is part of the knowledge

base even before the vector is formed. The context vector structure

consists of three elements:

"* A list of object types

"* A list of act types

"* A list of appositives

Elements of the context vector are used as key entries for all

dictionary queries. An application program variable or function call

provides the value of each element. Figure 2 is an example of the

structure and contents of a context vector. The "Object of level 5 (e.g.

screen level)" is an example. The value of that element (screen)

identifies the current screen.

In ACE. the identifier of the current screen is returned upon

invoking the function call: "curr_screen". The function call asks for a

value of the "currtscreen'. The value would be a value of the variable

"screen-id". In message construction, the value of "screenid" is

used as a key entry or as part of a key entry to enter some of the

dictionaries for a description of the screen or for other text to fill

42

C C

I.. 1 N*~ t 6
cc 0 C =0 C 3

>
CE 0l

a 0
0

Ch z

0 V)E

o C CC

0 0

0 Cc C

LL. a

0 II
> 4w~qS E C

C 1.I C.
0S

0 E :E. S .

b.ý I

Figure 2: The Context Vector

43

sentence slots. To "read" this element of the context vector, the

Dynamic Help module invokes the curr screen call. At run time,

there is a place in a sentence that an attribute of the context is

supposed to fit. To represent the "screen" attribute of the context

vector, there is a word 'screen" (an object of level 5) associated with a

program specific variable of the function named "curr_screen".

Currtscreen, when invoked, returns a value; let us call it "screen id".

The Dynamic Help module takes "screen_id" and enters dictionaries

using it as a key entry to retrieve material to fill message slots.

To specify a sentence slot requires specifying several things: the

name of the dictionary, fields in dictionary that fill the slot, and the

name of the key entry to the sentence slot. Assume, for example, that

the sentence slot will be filled with a description of the screen. If the

operating program screen names were sufficiently described by the

value of "screen id", the designer could simply specify that U' - value

of "screenid" would fill the slot. Failing that, if the operating

program maintained a suitable screen description which could be

designated by the designer as an appositive element of the context

vector, the designer could include that value, say "screen.descrip," as

an appositive element of the context vector. He could specify that the

slot to be filled with the appositive element.

Failing both of these opportunities to fill the slot directly from

the context vector, the designer would need to store the screen

descriptions in a screen dictionary, say (in relational notation)

screen (Ii, descrip)

(This means the name of the dictionary is "screen". its key field is

"k", and its other field is "discrip".)

44

Now let us use this notation for the sentence slot specification:

screen.descrip (k +- screenid)

This says that the slot is to be filled with the descrip value from the

screen directory in the row whose k column contains the value

screenid. The notation is equivalent to the SQL query

SELECT descrip
FROM screen
WHERE k = screenid

The message structure is a set of generic sentence structures: it

determines the order of message parts in the sentence structures;

and it controls how messages are assembled to be sent to the display.

3.4.2 General Message Structure

The knowledge base contains a representation of message

structure. It has eight sentence structures that provide structure for

the message. The sentence order in the message structure is

completely generic. Seven of the eight sentences have generic

structures: one dictionary stores all of the ad-hoc (non-generic)

sentences. The message structure in the knowledge base has logic for

querying dictionaries and the database. The Dynamic Help Generator

will provide the code that represents all the generic structures.

Additionally, it will be possible to modify the generic message

structure to provide additional sentences if a designer needs them.

Sentence slots make up the variable parts of each message.

Each slot specifies a context vector element as an object type, act

type, or appositive name. It also specifies the name of the dictionary

consulted using the value of that element of the context vector as the

45

key entry, and it specifies the dictionary field whose text actually fills

the slot.

To retrieve parts of a sentence, the knowledge base uses a

dictionary lookup. 'An SQL query is similar to a dictionary lookup. An

SQL query says 'select A from B where C = D" (Young 1991a). Here, A

is the dictionary field whose text actually fills the slot. B is the name of

the dictionary consulted using the key entry, and C is the key entry to

reach a specified slot containing an object or act type or appositive

name. In the notation introduced above, a slot specification is

<B.A (C +- D)>.

This sequence is valid when the knowledge base pulls something

straight out of a dictionary. When a slot is to be filled with a context

vector element value (i.e. screen-label), the <screen-label> can fill the

slot directly if the screen.label is an appositive in the context vector

for the screen. When a slot is to be filed with a dictionary value using

one key, each slot is filled with a dictionaryfield value from a

dictionary where the key entry is a context vector element name.

Thus, a slot is specified by listing the dictionary field, dictionary, and

context vector element name in the notation introduced above.

Informally,

if the slot is to be filled with the descriptor of the current
screen, and the dictionary is the screen dictionary, then
the slot would be specified: <descriptor of screen from
screen dictionary> (Young 1991a).

A slot may be filled with an indirectly specified text fragment:

<e.g. darg>. The variable darg is the name of a procedure that returns

the fragment possibly from multiple elements of the context vector

using multiple or indirect keys of a dictionary. The name "darg" is a

46

procedure that identifies the lowest-level active act, looks up the

direct argument of that act, and uses that argument as keys to look up

its description.

3.4.3 Sentence Structures

The Dynamic Help Generator should allow sentence

specification according to the following generic sentence structures,

and it should also allow modification of slot specifications,

modification of sentence structures, and addition of new sentence

structures. However, support of modifications is not a high priority

requirement; the main requirement for sentences is providing for

slot specification (Young 1991a).

The following specifications assume, except for the -Ready to"

sentence, that each slot will be filled by the value (either literal text or

the name of a variable, function, or slot specification that returns

literal text) in column A of dictionary B in the unique row where the

value in the key column C is the specified value D. This specification

has the form <B.A (C +- D)>, which is equivalent to the SQL query

SELECT A FROM B WHERE C EQUALS D.

1. "Ready to" sentence.

Ready to <verb><darg><prep><iarg>

where <verb> is <PRIDICT.verb (k •-priact>

<darg> is <PRIDICT.darg (k •-priact>

<prep> is <PRIDICT.prep (k 4-priact>

<arg> is <PRIDICT.iarg (k •-priact>

47

where priact is the value from the context vector of the lowest-

level active act; PRIDICT is the act dictionary for act-type i, where i is

the act type of the lowest-level active act; and k is the key field

column heading in the dictionary. Often <darg> and -darg> are

themselves not literal text but specifications.

2. Ad-hoc sentence.

<ADDICT.sentence (k- CV)>

whert 'DDICT is the ad-hoc dictionary; k is its key field, which

is a vector of the same structure as the context vector; and CV is the

vector of values in the current context vector. In k, each element has

the following possible values:

Value Meaning: This element of CV...

actually null can be anything

the text string "null" must be null

the text string "not null" cannot be null

<A> must evaluate to <A>

where <A> is a literal text string or a specification.

The designer can store an ad-hoc sentence in the sentence field

of the ad-hoc dictionary and put a context or partial context in the k

field. Every message whose context vector matches k for a row in the

dictionary will include the sentence from that row.

Any number of rows from the ad-hoc dictionary (grammatically.

more than one sentence) can be part of the ad-hoc sentence (Young

1991a).

48

3. Meanings sentence.

Meaning of <item>: <)IDCT.meaning (k - CV>

where MDICT is the meanings dictionary; k is a field of two

elements, i and r, where i is the index in the context vector

identifying which active act, active object or appositive the meaning is

for, and r is a code that identifies under what condition the meaning is

to be included in the message: when the act or object is the darg,

when it is either the darg or the iarg, when it is the iarg, or when it is

active (not null); and where item is an act or object or appositive that

can appear in element i of the context vector.

The designer can store a meaning in the meaning field of the

meanings dictionary for a given act or object or appositive stored in

the dictionary's item field; then, according to the code stored in r,

the message will include a meanings sentence when that act or object

or appositive is of suitable status.

Any number of rows from the meanings dictionary

(grammatically, more than one sentence) can be part of the meanings

sentence.

4. Choices sentence.

<CHIDICT.choices (name +- screen-field>

where CHDICT is the choices dictionary: choices is a field

containing text that instructs the user how to invoke a list of choices

or reminds the user to see a list already on display (on the running

screen, not in the help message); and name is the key field of the

dictionary. The designer stores in name the value of a particular

49

instance of the object of type "screen~field". Then, whenever the

context vector includes that value as the value of the active object of

the screen.field type, the sentence is included in the help message.

5. Format sentence.

Format: <FORDICT.format (k +- darg>

where FORDICT is the format dictionary; format is an

explanation or illustration of the format of a particular screen field; k

is the value of the screen field: and darg is the value of the direct

argument for the "Ready to" sentence above. If there is a value of k in

the dictionary that equals the current darg, then the designer has

provided a format for the darg, and the format sentence is included in

the message (Young 1991a).

6. Domain sentence.

DOMAIN: <DOMDICT.domain (k +- darg)>

where DOMDICT is the domain dictionary; domain is an

explanation or illustration of the domain of the data item associated

with a screen field; k is the value of the screen field; and darg is the

value of the direct argument for the "Ready to" sentence above. If

there is a value of k in the dictionary that equals the current darg,

then the designer has provided a domain for the darg, and the domain

sentence is included in the message.

7. Alternatives sentence.

To <verb><adarg><prep><aiarg>, <procedure>

where <verb> is <PRIDICT.verb (k + aitact)>

50

<adarg is <PRIDICT.darg (k +- altact)>

<prep> is <PRIDICT.prep (k +- Astact)>

<siarg> is <PRIDICT.iarg (k +- altact)>

where altact is the value

ALTDICT.S/tact (h - CV)

where ALTDICT is the alternatives dictionary that lists

alternative acts for contexts or partial contexts; h and CV are, for this

dictionary, defined as are k and CV for the ad-hoc dictionary above

(sentence 2); and altact is the field in the alternatives dictionary that

identifies the alternative act. There may be more than one alternative

act for a given context or partial context: possibly an alternative act of

the undo or abort nature, possibly an alternative act of the commit or

closure nature, and possibly an alternative act of the navigation nature.

However, the designer provides alternative acts sparingly, generally

omitting any that are a primary act in a different context (Young

1991a).

Let j be the act-type of the alternative act. Then PRIDICT is the

act dictionary for act-type J, having the key-field column heading k. so

that verb, adarg, prep, and siarg have values identified above (adarg is

the direct argument of altact, and aiarg is the indirect argument).

Finally, <procedure> is PRODICT.procedure (k +- altact) where

PRODICT is the procedures dictionary, k is its key field column

heading, and procedure is the text that explains the procedure for

invoking the alternative act.

If the designer has provided an alternative act for the context,

and has also provided a procedure for the alternative act, the message

will include the alternatives sentence for that act.

51

8. General Help sentence.

To see general documentation, <genproc>

where <genproc> is a fixed text phrase such as "press Fl"

provided by the designer. This sentence appears as the last sentence

in every Dynamic Help message.

The structure provided behind genproc depends on the existing

on-line documentation. One possibility is for genproc to invoke the

existing help system. Another is for genproc to invoke construction of

a message that contains both fixed and variable parts. and is supported

by further dictionaries.

The proper place to store basic instructions such as how to

complete an entry, which would appear in a high proportion of all

Dynamic Help messages, is behind the General Help sentence. These

instructions may be somewhat context-specific. For example, in

ACIFS. which has only two types of screen - menu screen and data-

entry screen - there is a GENDIC general help dictionary whose key

identifies the screen type, so that the user receives basic instructions

for menu screens or for data-entry screens, but not both, upon

invoking general documentation (Young 1991a).

3.4.4 Dictionary Structures

The Dynamic Help module for ACIFS needs the following

dictionaries to create sentences: object, format, commands,

functions, variables, domain, and protocols (Haines 1991). Here we

will specify a more general set of dictionaries. Dictionaries have

column headings for the key-entry column and for other columns.

52

The knowledge about an object is contained in dictionaries -

not the context vector, unless the running program contains

descriptive variables that can be used as appositives in the context

vector. The context vector is a means of identifying information that

will fit into a Dynamic Help message. In the event the designer failed

to define a particular kind of object in a DBMS-based system, software

engineers seeking to incorporate Dynamic Help need to define it for

the purpose of help messages.

To support the generic sentence structures, the Dynamic Help

Generator should provide structures for a generic set of dictionaries,

and it should allow modification of dictionary structures and definition

of additional dictionaries.

Assuming the sentence structures described in Section 3.4.3.

each of four act types requires an act dictionary; each object type

requires an object dictionary; the ad-hoc sentence requires a

dictionary; there is a meanings dictionary, a choices dictionary, a

format dictionary, a domain dictionary, an alternatives dictionary, a

procedures dictionary, and a general dictionary. All but the general

dictionary have fixed structures.

There are four act dictionaries, one for each act level, with

structures as follows:

Act Informal
level name Dictionary name and structure

1 Command COMMAND (id, verb, prep, darg, iarg)
Dictionary

2 Function FUNCTION (1d. verb, prep. defaultvalue,
Dictionary detailed_content)

3 Procedure PROCEDURE (jd, name)
Dictionary

4 Task TASK (jK. name)
Dictionary

53

Note that there is no field specifying the act level, since acts of

various levels are segregated into different dictionaries. Note that

there is no meaning field; long descriptive meanings for those acts

(and objects) that require them are kept in the Meanings Dictionary.

In each act dictionary the key entry field is id, which is an act

identifier value that can be read from the context vector. The verb or

name fields give the language for describing what is being done in an

act, and the darg. iarg, defaultvalue, and detailedcontent fields,

along with the prep field, give the language for describing what objects

are being directly and indirectly manipulated by the act.

There can be distinct dictionaries for each type of object. The

lowest-level type of object on a data-entry screen is a screen field. Its

important attributes are the name of the datum It represents, the

current value of that datum, the function-level (level 2) act that is

performed upon entry of the datum, the domain of the datum, and the

format of the screen-field (which is often regarded as an attribute of

the datum).

When the original design of the application program is clean,

most of these attributes are unnecessary to track in dictionaries. In

ACIFS, for example. there is only one database datum being entered in

a given screen field, and the same datum would never have two

distinct entry formats (e.g. SSN would have the same format wherever

entered). The screen field (in a data-entry screen) can actually be

identified by the name of the datum it represents as if the two things

- field and database item - were identical. Since acts are tracked

separately, it would be redundant to treat them as attributes of objects.

54

The object dictionaries must provide short descriptors of acts for use

in sentences. Their only generic structure is

OBJECT (d. descriptor)

where Id is the object identifier value read from the context vector,

and short-descriptor is the noun phrase that describes the object in

sentence slots. If objects of all types are put into a single dictionary, a

level field is also needed. If a long meaning is to be stored for most

objects, and the logic for when to include meaning is trivial, the

Meanings Dictionary can be omitted and a meaning field can be added

to the object dictionary or dictionaries.

The Meanings Dictionary has the structure

MEANINGS (Qd i, r. meaning)

where the key field id is the context-vector value that identifies an

object or act, i is the position in the context vector where this object's

or act's type is formed (i.e., the location in the context vector where

this object's or act's id value can appear), and r is the condition code

(recall Meanings sentence, Sentence 3 in Section 3.4.3) that governs

when the meaning is to be included in the message.

The Ad-hoc Dictionary has the structure

ADDICT (k. sentence)

where k is a vector of the same form as the context vector, with the

domain listed for Sentence 2 in Section 3.4.3.

The Choices Dictionary has the structure

CHOICES (id. sentence)

where id is a screen field identifier and sentence is a message

fragment telling the user how to see or invoke a list of choices when

55

this screen field is the darg. The format Dictionary and the Domain

Dictionary also refer to the darg and have similar structure

FORMAT (id, sentence)

DOMAIN (id, sentence)

whenever the darg is an object whose id is :isted in one of the

dictionaries, the sentence is included in the message.

The Alternatives Dictionary lists alternative acts that may be

available in addition to the primary act for a context. This dictionary,

the Procedures Dictionary, and the various act dictionaries feed the

Alternatives sentence. The Alternatives Dictionary has the structure

ALTDICT ft, altact)

where h is a vector of the same structure as the context vector and

altact is the act identifier for the alternative act. The key entry field is

h, which is a context or partial context interpreted as described for

the similar vector k for the Ad-hoc sentence in Section 3.4.3.

The Procedures Dictionary gives the user procedures to perform

selected acts and has the structure

PRODICT (k. procedure)

where the key field k contains an act identifier and procedure

contains instructions in the form of an imperative verb phrase.

Recall that the Alternatives sentence has a structure that returns

sentences such as "To delete soldier 462544872 from order 7940,

press F3," where "To" is a fixed string. "delete soldier 462544872

from order 7940" is a catenation of the verb, the adarg, the prep and

the aiarg for the alternative act (that is, the alternative act's verb, darg.

prep and iarg from the appropriate act dictionary for the alternative

56

act), the comma is fixed text, and procedure is from the Procedures

Dictionary.

If a procedure sentence (for the primary act) were added to the

Dynamic Help message, or if a procedure clause were added to the

"Ready to" sentence, the Procedures Dictionary is already in

appropriate form to support the added requirements.

Recall that the General Help sentence is fixed text. We assume,

for purposes of providing a generic General Help Dictionary, that the

available General Help message is a collection of fixed-text sentences,

each one associated with a partial context. The structure of the

General Help Dictionary is

GENDIC (kj, sentence)

where k is the key entry field and is defined like k for the Ad-hoc

sentence (Sentence 2) in Section 3.4.3. Alternatively, the entry field

can be defined like k in the Meanings sentence (Sentence 3) in

Section 3.4.3. In either case, k determines, according to the context,

whether each General Help sentence will be included in the General

Help message. In application programs such as ACIFS. having only

menu screens and data-entry screens, it is natural to have some

General Help sentences appear only for menu screens, some only for

data-entry screens, and some for both; thus, a single element from

the context vector, rather than a mask of the whole vector, would be

appropriate for k, since it is necessary only to know the screen type.

3.5 Automated Dynamic Help Illustration

An interactive scheduling program has a Gantt-chart window

used in the scheduling process, showing activities in the schedule as

57

bars, each consisting of a stack of horizontal color stripes representing

resource consumption rates. When the duration-change command is

active, the user can touch (by mouse or other pointer device) either

the left (start-time) or right (end-time) end of an activity, then touch

another point to "drag" that end left or right to crash or lengthen the

activity's duration (Young 1991a).

Suppose that the user has reached the scheduling process, has

touched the DUR command-menu item (which expresses an intention

to change durations of activities), and has touched one end of the bar

that depicts the activity named "ACT 37" in the Gantt-chart window.

If Dynamic Help is invoked, the context vector is as follows:

CV. CONTEXT VECTOR

1 2 3 4 5 6
process command window activitv resource data field

[SCH END .DURCHi GAN'Ir ACT37I (null) (null)I

acts ..-- objects ---.

The Dynamic Help system reads the context vector and

determines from it that the primary act is that of completing a

duration change ("ENDDURCH"). This is done by identifying the

rightmost (lowest-level) act that is not null in the context vector.

Determination of the primary act:

priact -- cv(i) such that I Is the max CV Index among those for non-null acts

58

The Dynamic Help system next begins constructing the

message, and the first sentence is the "Ready to" sentence. Because

the primary act is a command-level act (4=2), the sentence is filled

from the command dictionary according to the structure provided for

this case.

Structure of the "ready to" sentence:

Ready to <verb><darg><prep<ciarg>

where: cverb, is DICT1.verb (cmd •- priact)

<cdargu is DICTI.darg (cmd •- priact)

cprep, is DICTI.prep (cmd (- priact)

<iarg> is DICTl.iarg (cmd •- priact)

(If the lowest-level active act had been a process-level act, the

structure could be different and could be filled from the process

dictionary.) The spaces between sentence fragments and the period

at the end of the sentence are part of the sentence specification, but

they are not shown.

The command dictionary and macros table have entries as

illustrated:

DICT1. COMMAND DICTIONARY

cmd verb darg prep iarg

BEGDURCH "begin to crash or lengthen" "an activity" "by" MAC(17)

ENDDURCH "Complete crashing or lengthening" CV(4) "by" MAC(18)

59

MAC. MACROS TABLE

mac_Id macro

17 "touching one end"

18 "touching to left or right of its active end"

With the illustrated data, the "Ready to" sentence can be

constructed (Young 1991a).

Construction of the "Ready to" sentence:

1. priact +- ENDDURCH

2. verb %, "complete crashing or lengthening"

3. <darg:, .- CV(4) +- "ACT37"

4. <prep3 + "by"

S. aergy, +- MAC(18) +- "touching to left or
right of active end"

Thus the constructed "ready to" sentence Is

Ready to complete crashing or lengthening
ACT37 by touching to left or right of Its
active end.

Sirmiarly, given the ad-hoc dictionary, the Ad-hoc sentence can

be constructed.

60

DICT2. AD-HOC DICTIONARY

context sentence
1 2 3 4 5 6

I IEND'-I I I I I "Optionally, touch a point on the timescale"

Construction of the Ad-hoc sentence

1. CV obeys CV(2) +- END-*

2. Structure of the Ad-hoc sentence is

-ad-hoc sentence2'

whom -ad-hoc sentence=, Is DICT2.
sentence (context r CV)

Thus the message fragment that Is provided for all contexts
in which the active command Is one whose CV value begins
with "END_"is retrieved from DICT2:

Optionally, touch a point on the timescale.

In this context, the Meanings sentence, Choices sentence,

Format sentence and Domain sentence would be null. The Meanings

sentence would be null because the designer did not provide either a

meaning for the primary act in the act meanings dictionary nor a

meaning for the darg (direct argument of the primary act) in the

object meanings dictionary. The Choices sentence would be null

because no choices availability was listed for the darg in the choices

dictionary. The Format and Domain sentences would be null because

the darg is not a data field (Young 1991a).

61

Assume it has been decided that whenever a multi-command

procedure is ready for closure (as indicated by there existing both an

active activity and an active command whose value begins "END._'},

the user may be confused as to how to abort the procedure. There are

several possibilities. The user can touch an end of a different activity

to begin changing its duration instead of that of ACT 37, but this would

be an expert shortcut irrelevant to a Dynamic Help message. The user

can touch the NEU (neutral-state) command menu Item, which can

always be touched to deactivate both the active command and the

active activity, but this is general and would be documented under

General Help. Finally, the user can touch a different command menu

item and be ready to do something different (such as specify a start

time) or the active activity - another expert shortcut. Confusion can

be resolved by providing an Alternatives sentence for all contexts like

this (Young 1991a). The alternatives dictionary has the same key

(context) as the ad-hoc dictionary:

DICT3. ALTERNATIVES DICTIONARY

context sentence

1 2 3 4 5 6

END_ not null -To abort, touch another activity
or another command or NEU"

Thus, including the Alternatives sentence and the fixed-text

General help sentence, the complete Dynamic Help message for the

illustrated context would be:

Ready to complete crashing or lengthening ACT37 by
touching to left or right of its active end. Optionally, touch

62

a point on the timescale. To abort, touch another activity
or another command or NEU.
To see general documentation, press Fl.

63

4. The Dynamic Help Generator. a set of Designer's Tools

4.1 Requirements for the Dynamic Help Generator

There are two basic requirements for the Dynamic Help

Generator work undertaken at AIRMICS in the Summer of 1991. The

first is to implement a prototype Generator for the specific ACIFS

application program in the specific programming environment ACE.

This prototype Generator is the collection of ACE routines being

prepared by Mr. Smith and due for delivery September 30, 1991, with

internal documentation.

The second basic requirement is to specify the requirements for

a generic Dynamic Help Generator. This section provides those

requirements, which should govern further Generator development.

These requirements are compatible with the results of Captain Haines'

automatability research and with the "Proposal for Dynamic Help

Developer's Tool kit" (Smith. 1991b).

There are 5 requirements for the generic Dynamic Help

Generator (Developer's Tool kit"):

1. The generic Generator shall consist of four tools:

"* Program context definition tool

"• Help sentence specification generator

"* Help dictionary generator

"* Help message production routine

2. Each tool shall consist of routines and documentation fully

integrated into the ACE programming environment and

64

immediately usable for developers of Dynamic Help for

existing ISMs whose interfaces are written under ACE and

whose general nature is that of DBMS-based application

programs.

3. Each tool shall be written so as to be maximally portable from

ACE to another environment. In particular, routines that can

be written in the C language shall not be written in the ACE

script language.

4. Those parts of tools that produce code to query an

application's database at run time shall be written in a

standard dialect of the SQL query language, in such a way that

the SQL queries can easily be translated to the C language.

5. Each tool will provide flexibility for the developer to accept

default structures or modify them. In particular, there must

be flexibility for a Dynamic Help developer

* to add context monitoring logic to the application

program

o to alter the structure of the context vector

@ to change the specifications for filling any sentence slot

a to add sentences to the message

o to alter the fixed order of sentences

0 to specify additional dictionaries where needed

The program context definition tool will be an interactive

subroutine in the ACE environment. It will interact with the

65

developer to allow definition of global variables at points where the

context changes.

The Help sentence specification generator will be an interactive

subroutine in the ACE environment. It will interact with the

developer to present each of the eight standard sentence structures,

to collect slot specifications for each sentence slot (including

acceptance of generic slot specifications). to allow revision of fixed

text in sentences, to allow new slots to be added to a sentence, to add

new sentence, and to revise the order of sentences.

The Help dictionary generator will be an interactive subroutine

in the ACE environment. It will interact with the developer to present

each of the standard dictionary structures, to collect data from the

developer to fill each row of each dictionary, to alter the definition of

the key entry field of each dictionary, to add fields, to delete fields,

and to define new dictionaries. SQL statements may be used for

defining and filling dictionaries (that is, the developer can be allowed

to use standard SQL commands such as DEFINE, INSERT, DELETE,

UPDATE, COMMIT, etc. in interacting with the tool).

The Help message production routine will be totally automated

and will not require developer attention. However, the developer will

be provided with the Interactive capability of producing messages and

sending them to a screen or printer destination while in the

development environment; this will Include the capability of

producing an arbitrary developer-defined set of context-vector values

to simulate a run-time context.

66

The technical requirements for generic structures of messages

and dictionaries are exactly those given above in Sections 3.4.1, 3.4.2,

3.4.3, and 3.4.4, except as may be modified by future specifications.

4.2 Generator Implementation for ACIFS

The Dynamic Help Generator grew out of a need for software so

simple and so easy to field that U.S. Army DBMS-based system users

could use the software as if it were off-the-shelf software from a

computer store. The sending of 4-5 person teams to every Army post

to spend two weeks programming the installation's software, training

the users, and troubleshooting is too slow and expensive (Gantt 1991).

The two possibilities that would accomplish the aim of speeding

up user proficiency included tutorials and help facilities. Because

Dynamic Help would have an immediate application, it was selected

for development. Dynamic Help assumes that a user knows a limited

amount about turning on a system and can perform some simple user

functions, and it means that the users can perform the rudiments of

CIF tasks on paper. The Dynamic Help facility was intended to get the

users through CIF tasks.

Dr. Donovan Young oversaw the development of the entire

Dynamic Help project and provided the necessary guidance for team

members. Both Dr. Young and Mr. Christopher Smith designed the

initial specifications for a Dynamic Help module (Young 1990a).

Captain Ren6e Wolven and Captain Stanley Haines assisted Mr. Smith

by writing the prototype Dynamic Help messages. Captain Wolven

tested the usefulness of the Dynamic Help messages using the

prototype Dynamic Help module written by Mr. Smith (Wolven 1991).

67

Captain Walter Barge designed the concept and philosophy for a

Dynamic Help Generator (Barge 1991). Captain Haines developed a

procedure to generate Dynamic Help messages using a context vector,

dictionaries, knowledge bases, and the eight sentence structures

(Haines 1991).

Dr. Jerry McCoyd performed the initial Dynamic Help Generator

conversion from Informix-4GL to C language. Mr. Smith is creating a

working prototype of the tools and software for the Dynamic Help

Generator (Smith 1991a).

At present, the U.S. Army software Development Center in

Atlanta is rewriting the ACIFS software: it will then be compatible

with the ACE C language that the Dynamic Help Generator uses to

construct Dynamic Help modules. Unfortunately, the ACIFS #L08-04-

01 will reach the field without a Dynamic Help module.

It will take time to add Dynamic Help to existing DBMS-based

Army software; it would be smarter to design Dynamic Help into new

systems. Fortunately, The Dynamic Help Generator will give the

software designers of new software the increased capability to

systematically add Dynamic Help to systems when specifying the

systems. Additionally, Dynamic Help has the capability to change

(Help messages are created for specific contexts) as installation

software is upgraded to avoid obsolescence (Gantt 1991).

Once the generator and supporting documentation are

complete, the ACIFS #L08-04-01 will be ready to receive the new

Dynamic Help modules. AIRMICS will give the software and

documentation to the U.S. Army Software Development Center in

Washington D.C. and in Atlanta for their review. The two centers are

68

anxious to get the software and documentation and to test it. It will

then be sent to the field immediately with the next software upgrade

team. The development centers will use the Dynamic Help Generator

to incorporate Dynamic Help into all future DBMS-based software.

4.3 Recommendations

A proposal for further Dynamic Help automation is under

consideration (Smith 1991b). It provides for preparation of a generic

Dynamic Help Generator and application to another ISM. It is

recommended that the requirements listed in Section 4.1 above be

adopted to guide this work.

It is also recommended that part of this work be the early

preparation of a formal specification document for the generic

Generator. This would translate the requirements (Section 4. 1) into a

more ACE-specific set of tasks that can be managed. scheduled and

monitored for quality. It would also isolate the early design decisions

regarding how to implement the Generator under ACE. Any delay of

these decisions could delay the production of a finished Generator.

It is essential to publish the finished Generator as widely as

possible, within the Army and DOD, and in the technical literature.

The recent AIRMICS accomplishments of producing a help system

that makes complex interactive software usable without training, and

of showing that the production of the system can be efficiently

automated, have tremendous implications for all developers of

complex interactive software. AIRMICS has found a cost-effective way

of improving software usability without reprogramming. and the

results deserve wide dissemination.

69

Appendix 1
Description of ACRONYMS

70

ACRONYMS

ACE Application Connectivity Engineering

ACIFS Automated Central Issue Facility System

AIRMICS.. Army Institution for Research in Management
Information, Communications, and Computer Science

DBMS Data Base Management System

ETIP..... Extended Terminal Interface Program

EUS Embedded User Support

ILIDB Installation Level Integrated Data Base

ISM Installation Support Module

RAM Random Access Memory

SQL Standard Query Language

UIC Unit Identification Code

71

Appendix 2
Sample Specification of a Menu-screen Dynamic Help Message

72.•

I M EFressaae -:De--¶ i rict: o k E'NU %oge___

LOCAT ION I NFORMAT ION:

:,., CUrrent Screen: Af-__)r r

GLOBAgL CONTEXT: -LJl[,c'- .:..t'r ^1IA

-l U < Cw > 0) i#fl tC ! ýE=i.

A L.:14 ýi; I : ý77 z-<1 4 L- <Li

LOCAL:NE)T

rr~~rr Or! 'Cie~A~

JNDU:~~e: :~

73

MOY AVhILAJ4~ -Q L DM~]gar FrL1wg XFODCTQ

Appendix 3
Sample Specification of the Specification of a Data-entry-screen

Dynamic Help Message for Both Global and Local Messages

74

e. , . .- - .

* • . , dl. ,d•'l LJ•

Da te cZ3 HELP riessace S0ecai+Ications(INPUT -GLOBA-, ; aae

LOCATI-ON INFORMATION:

A. C.Urrent .Sc-re~en: -74ry -I-

*~ FL LYNJLb

-- e 30 LS reen: :J'rv-\ +r An _ _ _ _ _ _ _

HEADING:(A>_________

GLOBAL CONTEXT: 'Whe-e Eznci wria -o - ubpriar,

-Kspeedv L'L Lri-pc-. oy> CSA <rDiJ Y)L~ i(~ SS,- A,~<~T

CCW #4 TTD 144 V '>i:. 7 Dim4. c:t c.r c, ~ t c;________N_____U__

L2LIR~.E:hJO~.~'KLA K

aE;r~LT zu -n!-RE IN t- cI~ ti o- z m- vi r i.,Ec

r, ne e 1r~ .C I L __ _ __ _ __N_ _ __ _ __ _ __>_ _

L~iNDE '7u m~iý iii.t <r __ _ _ __ _ _ __ _ _ _ __ _ _ __ _ _

75
COPY AVAILA3L4,TO DW SOT WZMW FULLY MUMSDL REPRODUCTION

cOPYDO s- - OT

C-U--EUt E re -j ea]nt or:ji~

CUf-rent Dat Object:-

Lr' ZhTE. T:

l~tj1.~e cr7QT>

*.-~~7 77.C'

76

.

I.a
oDI OS O XWM YLIBERMO~-n

. f *a~: *; -- .7.

Appendix 4
Sample Entries from the Dictionary of Text Macros

78

COPY ~ M LVDW~ TC)3 NOT FKMW1 FULY Law"BL

Dactionarv of HELP Messaoe Coces

CODE DEFINITION/MEANING -Phrase J-E:;amole.
List or

a n ormst
A -L.Ur-rerit E5:reervp Lbe-t n i.or - C-uerv

.4CCEF7.. ACCeotable Eantriesý -r
*A Ur[H aut hori ze~d
(AUTO. aUtom~ated

*0-r eViCILIS, Ec::reE7n Deiin: t or,
EI AC I use 1-ACKSFAZE anid overstw-i ke j rircri-ect uat H

~E~I<F Dress, IWC-,C:EPACE Kev
EIiLAI. BACI SF'C F.ev dopes riot e!e dati~

iOr d in ar i v We::t Sc r (t'r-n
CMFD. comol~eted
DCOM1 cc)m r)1c. ~tE e it1 .1

CK Dort-S R'E'tUrr
:DEL ores L (Del ete~) i..ev

~DES Des ir iri a
.DEED. is desireo

DN.; .nresi5 DOWN k-rro~w I.ev
D X di rvc, v.:chanou-

,:ENTER enter the
:ENTRS.* ent r ies
.E RR art ro OCLr
..EEC. DreS!. ESC KeV
:.EXAMI **EX AM F,.:"
::EXCH e;:crianoeb
wFI N to comole'te

.H! T hiohlih

I NDS I i iCaS

INS7 aomTisa.Iaio

!TM item
:TMs tm

2155D. ssuec
:Lk~. ALUse *.E.- * RIGH7 4r-row [.evs, to niorniioht:

'LT., oress. LEý'- Arow lKev
-<MANU manal~
:MATCH. matches cisclavec

<M."M" for- maie ant " ;-cr- +e~maie
N EED as neeoec
.NOTE7 *-*NOT-=-

NOUSE Do 1`10' Use~ thi!.v ootior- 14
.NU *NULL entrv

-- osi-ec: ootaon umie

LOEF ovvrr:e
oe-,orff ent-v aoE%:r

79

Bibliography

Barge, Walter. "Universal Software Documentation via Dynamic
Help." Research report, Georgia Institute of Technology, 1991.

Dorazio, Patricia. "Help Facilities: A Survey of the Literature."
Technical Communication, 118-121. Second Quarter, 1988.

Gantt, James. [Dynamic Help Generator implementation within the
U.S. Army]. Interview with the author, Georgia Institute of
Technology, 19 August 1991.

Haines, Stanley. "Automatable User Support for Existing U.S. Army
Installation-Level Software." Masters thesis, Georgia Institute of
Technology, expected completion September, 1991.

Haines, Stanley. "Specification of Dynamic Help Menu Messages for
EUS Project and CIF Conversion." School of Industrial and
Systems Engineering, Georgia Institute of Technology, 14 May
1991a.

Haines, Stanley. "Specification of Dynamic Help Global Messages for
EUS Project and CIF Conversion." School of Industrial and
Systems Engineering, Georgia Institute of Technology, 16 May
1991 b.

Haines, Stanley. "Specification of Dynamic Help Local Messages for
EUS Project and CIF Conversion." School of Industrial and
Systems Engineering, Georgia Institute of Technology, 30 May
1991 c.

Horton, William. "Help Facilities." In Designing & Writing Online
Documentation, 253-267. New York, NY: John Wiley & Sons.
1990.

Horton, William. "Making information Accessible." In Designing-&
Writing Online Documentation, 253-267. New York, NY: John
Wiley & Sons, 1990a.

Smith. Christopher, Mike McCracken, Donovan Young. 'Embedded
User Support Project Plan." School of Industrial and Systems
Engineering. Georgia Institute of Technology. 1990 [photocopy].

Smith, Christopher. [A technical explanation of ACIFS and the
Dynamic Help Generator]. Interview with the author, Georgia
Institute of Technology, 24 July 1991.

80

Smith, Christopher. [A technical explanation of the architecture of
the Dynamic Help Generator]. Interview with the author.
Georgia Institute of Technology, 20 August 1991a.

Smith, Christopher and Young, Donovan. "Proposal for Dynamic Help
Developer's Toolkit." School of Industrial and Systems
Engineering, Georgia Institute of Technology, 1991b.

Wolven, Renee. Effectiveness Testing of Embedded User Support for
U.S. Army Installation-Level Software. Masters thesis, Georgia
Institute of Technology, 1991.

Wolven, Renee and Young, Donovan. "Specification of Dynamic Help
Messages for EUS Project and CIF Conversion." School of
Industrial and Systems Engineering, Georgia Institute of
Technology, 17 January 1991.

Wolven, Ren&e and Young, Donovan. "Specification of Dynamic Help
Messages for EUS Project and CIF Conversion." School of
Industrial and Systems Engineering, Georgia Institute of
Technology, 29 January 1991.

Young, Donovan. "Embedded User Support for U.S. Army Installation
Software." White Paper, Georgia Institute of Technology, 1990.

Young, Donovan. "Specification of User Requirements and Dynamic
Help System Standards for EUS Project and CIF Conversion."
School of Industrial and Systems Engineering, Georgia Institute
of Technology, 1990a [photocopy].

Young, Donovan. "Dynamic Tutorials for Installation Support
Software." School of Industrial and Systems Engineering,
Georgia Institute of Technology, 1991 Iphotocopyl.

Young, Donovan. [Dynamic Help and the Dynamic Help Generator].
Unpublished lectures to the Author. Georgia Institute of
Technology, 1991a.

Young. Donovan. "General Specifications For Dynamic Help
Generators." School of Industrial and Systems Engineering,
Georgia Institute of Technology, 1991b.

SI

